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1. Introduction. The application of interior point methods to optimal control

problems has received a good deal of interest in the past years. This parallels the fast

development of numerical methods in large scale optimization where interior point

methods play an important role. In the context of PDE control, their performance

was carefully tested by Haddoux et al. [5] for discretized versions of elliptic control

problems. Similarly, Grund and Rösch [4] considered different codes of interior point

methods for elliptic control problems with pointwise state-constraints. Trust-region

interior point techniques have been considered by M. Ulbrich, S. Ulbrich and M.

Heinkenschloss in [11] for the optimal control of semilinear parabolic equations in a

function space setting. Moreover, affine-scaling interior-point methods were presented

for semilinear parabolic boundary control in [10].

In [13, 12] primal-dual interior point methods in the infinite dimensional function

space setting for ODE problems have been analyzed and their computational realiza-

tion by inexact pathfollowing methods has been suggested. In [14] this method has

been enhanced on the control of elliptic PDE problems with control constrains.

A satisfactory convergence theory, however, had only been obtained for control

constraints, whereas results for state constraints are scarce. The difficulty arises from

the fact that Lagrange multipliers for state constraints are usually only measures,

which hampers theoretical convergence analysis and affects the numerical solution.

As concerns the regularity of Lagrange multipliers, the situation changes for mixed

control-state constraints such as constraints of bottleneck type. Under natural as-
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sumptions, their multipliers can shown to be functions in certain Lp-spaces, we only

mention [9, 2, 1]. In [6], the idea came up to add a tiny fraction of the control

to the state constraint such that a mixed control-state constraint results. The La-

grange multiplier to this mixed constraint is a bounded and measurable function.

This Lavrentiev-regularization for state constraints has been analyzed in the context

of primal-dual active set methods for elliptic control problems.

In the current paper, both ideas are combined. We analyze a primal interior

point method applied to a Lavrentiev regularized state constrained optimal control

problem defined in §2. We show existence and convergence of the central path defined

by the interior point method in §3 and §4, respectively. In §5, we turn to the linear

convergence of an implementable short-step pathfollowing method. The paper is

concluded with a set of numerical examples in §6.

2. Problem setting. In this paper we consider the optimal control problem

(P) min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) (2.1)

subject to the elliptic boundary value problem

Ay = u in Ω (2.2)

∂ny + αy = 0 on Γ (2.3)

and to the pointwise mixed control-state constraints

y + λu ≥ yc a.e. in Ω. (2.4)

In this setting, Ω ⊂ R
N , N ∈ {2, 3}, is a bounded domain with C0,1−boundary Γ,

yc, yd ∈ L∞(Ω) and α ∈ L∞(Γ) are fixed functions, and ν, λ ∈ R, λ > 0, are given

constants. By A we denote the differential operator

(Ay)(x) = −
N
∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj
y(x)

)

+ c0(x)y(x)

with coefficients aij ∈ C1,1(Ω), c0 ∈ L∞(Ω) satisfying aij(x) = aji(x) and the condi-

tion of uniform ellipticity

N
∑

i,j=1

aij(x)ξiξj ≥ δ|ξ|2 ∀ξ ∈ R
N .

Moreover, we require c0(x) ≥ 0, α(x) ≥ 0 and assume that one of these two functions

is not vanishing identically. We refer to problem (2.1)–(2.4) as problem (P). Let us

introduce the following
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Notations. By ‖ · ‖ = ‖ · ‖L2(Ω) and (·, ·) we denote the natural norm and the

associated inner product of L2(Ω), respectively. We use ‖A‖Lp→Lq to denote the

norm of a linear continuous operator A : Lp(Ω) → Lq(Ω). In the case p = q = 2, this

norm is just denoted by ‖A‖. For ‖A‖Lp→Lp we write ‖A‖Lp . Throughout the paper,

c is a generic constant. Moreover we write Lp for Lp(Ω) to shorten the notation. If

no confusion is possible, we write S + v instead of S + vI , although S is an operator

and v a function.

If v ∈ L2(Ω) is a given function, then v ≤ 0 means v(x) ≤ 0 for a.a. x ∈ Ω. By ∂n

the co-normal derivative

∂nu =

N
∑

ij=1

niaijDju

is denoted.

The main scope of our paper is to discuss the convergence of the standard interior

point method for the problem (P). The simplest and well known idea of introducing

this method is the elimination of the mixed control-state constraint y + λu ≥ yc by a

logarithmic barrier function. We substitute (P) by the problem

(Pµ) min Jµ(y, u) :=
1

2
‖y − yd‖2 +

ν

2
‖u‖2 − µ

∫

Ω

ln ((y + λu − yc)(x)) dx (2.5)

subject to

Ay = u in Ω (2.6)

∂ny + αy = 0 on Γ (2.7)

with u ∈ L2.

In our analysis, we transform the state-constrained problem (P) to the problem

(3.4)–(3.5) with control constraints. We have two reasons for: The analysis of this

transformed problem is simpler than that for (P), since we are able to prove the nec-

essary regularity of Lagrange multipliers. Moreover, it is easier to show the existence

of the central path for (3.4)– (3.5).

3. Existence of the central path. In this section we establish the existence

of unique minima vµ of (Pµ) for all µ > 0. We refer to the mapping µ 7→ vµ as the

central path, even though continuity is proved only in Section 4. First we recall some

known facts about the state-equation (2.2)–(2.3).

Theorem 3.1. Under our assumptions, for all u ∈ Lr(Ω) with r > N
2 , equa-

tion (2.2) has a unique solution y ∈ H1(Ω) ∩ C(Ω̄). There is a constant c(Ω, r) such
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that

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ c ‖u‖Lr(Ω).

The theorem was shown by Casas [3]. It ensures that, for N ≤ 3, the mapping

G : u 7→ y is continuous from L2 to H1(Ω) ∩ C(Ω̄). In particular, it is continuous

in L2. We denote the associated mapping by S = EG, where E : H1(Ω) → L2 is

the embedding operator from H1 ∩ C(Ω̄) in L2. Therefore, we have S : L2 → L2,

continuously.

By S, problem (P) becomes equivalent to

min
1

2
‖Su− yd‖2 +

ν

2
‖u‖2 (3.1)

subject to

λu + Su − yc ≥ 0 a.e. in Ω. (3.2)

Remark. S is known to be a compact operator. By λ > 0, −λ is not an eigenvalue

of S, see the discussion below.

To transform (3.1)–(3.2) into a control-constrained problem, we substitute

v := Su + λu.

By our assumption,

D := (S + λI)−1 (3.3)

exists as a continuous operator in L2. In fact, since λ > 0, we have λu + Su =

0 ⇔ λu + y = 0 ⇔ u = − 1
λy. This means Ay = − 1

λy, hence Ay + λu = 0 and

∂ny + αy = 0. Clearly, by coercivity this equation has only the trivial solution. After

this substitution, (3.1)–(3.2) is equivalent to

min f(v) :=
1

2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 (3.4)

subject to

v − yc ≥ 0, (3.5)

where v ∈ L2. This is a control-constrained problem for the new control v that is

interesting in itself. For the special choice D = I our analysis covers problems with

simple bounds on the control v = u. The interior point method for (3.4) and (3.5) is
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equivalent to solving

min

{

f(v) − µ

∫

Ω

ln (v(x) − yc(x)) dx

}

. (3.6)

Obviously, the quadratic functional f is continuously differentiable in L2. Its deriva-

tive is given by

f ′(vε) v = (p̃ + νD∗Dvε , v)

with p̃ = D∗S∗(SDv − yd). Here, S∗, D∗ : L2 → L2 are the Hilbert space adjoints to

S, D, respectively. If vε(x) − yc(x) ≥ ε > 0 holds a.e. on Ω, then the functional

φ(v) = µ

∫

Ω

ln (v(x) − yc(x)) dx

is differentiable at vε ∈ L2 in any direction v = ṽ − vε, where ṽ(x)− yc(x) ≥ ε a.e. in

Ω. Moreover, it is differentiable in any direction h ∈ L∞(Ω), since v + t h − yc ≥ ε/2

for sufficiently small t.

Suppose now that (3.4)–(3.5) admits a solution vε = vε(µ) ∈ L2 satisfying vε(x)−
yc(x) ≥ ε > 0. Then we get from the differentiability properties mentioned above

f ′(vε) − φ′(vε) = 0, (3.7)

since in this case vε belongs to the L∞-interior of the admissible set. Therefore, it

holds

p̃ + νD∗Dvε −
µ

v − yc
= 0 a.e. in Ω.

Define η ∈ L∞(Ω) by

η(x) :=
µ

v(x) − yc(x)
. (3.8)

Then we have η ≥ 0, vε − yc ≥ 0 and η(vε − yc) = µ for almost all x ∈ Ω. This

function η will tend to a Lagrange multiplier for (P) as µ ↓ 0. However, we have to

show that (3.4)– (3.5) is solvable, i.e. that the central path exists.

To verify this, we consider for fixed µ > 0, ε > 0 the auxiliary problem

(Pε
µ) min

v(x)−yc(x)≥ε
fµ(v) = f(v) − µ

∫

Ω

ln (v(x) − yc(x)) dx

where v ∈ L2. We first prove that this problem is solvable. Next we show that the

solution is not active for all sufficiently small ε > 0. In this way, finally a solution of
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(Pµ) is found.

Lemma 3.2. For all µ ≥ 0, it holds that fµ(v) → ∞ if ‖v‖L2 → ∞ and v(x) ≥
yc(x) + ε.

Proof. Since ‖v‖ = ‖D−1Dv‖ ≤ ‖S + λI‖ ‖Dv‖, we have

fµ(v) =
1

2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 − µ

∫

Ω

ln (v − yc) dx

≥ ν

2
‖Dv‖2 − µ

∫

Ω

(v − yc) dx

≥ νδ0

2
‖v‖2 − µ ‖v − yc‖L1 ≥ νδ0

2
‖v‖2 − µ c ‖v − yc‖ (3.9)

with δ0 = ‖S + λI‖−1 > 0. Obviously, ‖v‖ → ∞ implies fµ(v) → ∞.

Theorem 3.3. For all µ ≥ 0 and 0 < ε ≤ 1, problem (Pε
µ) has a unique solution

vε(µ). There is a constant cv < ∞ independent of µ and ε such that ‖vε(µ)‖ ≤ cv.

Proof. Obviously, fµ is convex and continuous on the convex and closed subset

Cε ⊂ L2,

Cε = {v ∈ L2(Ω) | v(x) − yc(x) ≥ ε > 0 for a.a. x ∈ Ω} .

Therefore, fµ is lower semicontinuous on Cε. Lemma 3.2 yields the existence of cv > 0

such that all v ∈ Cε with ‖v‖ > cv can be neglected for the search of the infinimum

of fµ: We take ṽ := yc + 1, then the logarithmic term vanishes and

fµ(v) ≥ fµ(yc + 1) =
1

2
‖SDṽ − yd‖2 +

ν

2
‖Dṽ‖2

for all sufficiently large ‖v‖. On Cε∩
{

v ∈ L2 | ‖v‖ ≤ cv

}

, the functional fµ is bounded,

hence

j(ε) := inf
v∈Cε

fµ(v)

if finite. Let vn ∈ Cε, ‖vn‖ ≤ cv, be an infimal sequence, i.e. fµ(vn) → j for n → ∞.

We can assume w.l.o.g. weak convergence in L2, vn ⇀ vε ∈ Cε. By lower

semicontinuity, a standard argument yields

fµ(vε) = j,

hence vε is the solution of (Pε
µ).
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We recall problem (Pε
µ),

min fµ(v) :=
1

2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 − µ

∫

Ω

ln (v − yc) dx

v(x) − yc(x) ≥ ε a.e. in Ω.

As in the theorem above, we denote the solution of (Pε
µ) by vε, since µ is taken fixed

for a while. Take any other v ∈ Cε and t ∈ [0, 1]. Then vε + t(v − vε) ∈ Cε, hence

fµ(vε + t(v − vε)) is defined. Note that fµ is not Gâteaux-differentiable in L2, since

fµ(vε + ht) may be undefined for h ∈ L2. However, it is directionally differentiable in

the direction v − vε. From

0 ≤ fµ(vε + t(v − vε)) − fµ(vε)

t

we find by t ↓ 0 for the directional derivative

f ′
µ(vε)(v − vε) ≥ 0 ∀v ∈ Cε.

In terms of our transformation, this can be written as

(

D∗S∗(SDvε − yd) + νD∗Dvε −
µ

vε − yc
, v − vε

)

≥ 0 ∀v ∈ Cε. (3.10)

Define pε := D∗S∗(SDvε − yd). Then we can re-write (3.10) as

(

pε + νD∗Dvε −
µ

vε − yc
, v − vε

)

≥ 0 ∀v ∈ Cε. (3.11)

We shall show that ‖pε‖∞ is bounded, independently of ε: The operator S is known

to be self-adjoint, S = S∗. Moreover, as S = EG, S is even linear and continuous

from L2 to L∞. The same holds for S∗.

Let us discuss the form and the regularity properties of the operator D. We have

D = (S+λI)−1. Put w = Dz. Then z = Sw+λIw. It follows λw = z−Sw = z−SDz

and w = λ−1z − λ−1SDz. Therefore D admits the form

D = λ−1(I − SD). (3.12)

From this representation we get the additional regularity property D : L∞ → L∞,

continuously. This follows from D : L2 → L2 and S : L2 → L∞. Moreover, we

have D∗ = (λI + S∗)−1. With the same argument, D∗ = λ−1(I − S∗D∗), hence also

D∗ : L∞ → L∞ since S∗ = S : L2 → L∞ as well. Notice, that S and D commute, S∗

and D∗ as well.
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We know from Lemma 3.2 that ‖vε‖ is bounded by a constant cv that does not

depend on ε. Now we estimate ‖pε‖∞ by

‖pε‖∞ = ‖D∗S∗(SDvε − yd)‖∞
≤ ‖D∗‖L∞→L∞ ‖S∗‖L2→L∞ ‖SDvε − yd‖ ≤ cp, (3.13)

where cp does not depend on ε, since ‖SDvε−yd‖ ≤ ‖S‖L2→L2‖D‖L2→L2‖cv‖+‖yd‖.
Next we evaluate (3.10). Let us define the sets

M+(ε) :=
{

x ∈ Ω
∣

∣

∣
pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
> 0
}

M0(ε) :=
{

x ∈ Ω
∣

∣

∣
pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
= 0
}

.

Due to (3.10), M+(ε) ∪ M0(ε) cover Ω up to a set of measure zero. Clearly, the

variational inequality (3.10) implies vε(x) − yc = ε for almost all x ∈ M+(ε).

Theorem 3.4. There exist constants a, b > 0 such that the set M+(ε) has measure

zero for all ε < a(
√

1 + bµ − 1).

Proof. For almost all x ∈ M+(ε), the constraint is active, i.e. vε(x) − yc(x) = ε.

Thus by (3.13) we have for almost all x ∈ M+(ε)

cp + ν (D∗Dvε)(x) − µ

ε
≥ pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
> 0. (3.14)

By (3.12),

D∗D = λ−2(I − S∗D∗)(I − SD) = λ−2I + K

with K : L2 → L∞

K = A−2 {−(S∗D∗ + SD) + S∗D∗DS}

bounded. Moreover, we know almost everywhere on M+(ε) that vε(x) = yc(x) + ε,

hence

cp + ν (D∗Dvε)(x) = cp + ν (λ−2(yc(x) + ε) + (K vε)(x)).

With the left-hand side of (3.14), Theorem 3.3 yields

cp + ν(λ−2(yc(x) + ε) + ‖K‖L2→L∞cv) >
µ

ε
.

It is visible that the right hand side tends to zero as ε ↓ 0 while the left hand side

remains bounded. Therefore, the inequation can not be satisfied for small ε.

Solving this quadratic inequality for ε establishes the existence of constants a, b >
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0 such that

ε > a(
√

1 + bµ − 1).

For smaller ε, M+(ε) must therefore have measure zero.

Corollary 3.5. For all ε < a(
√

1 + bµ−1), the solution vε of (Pε
µ) is the unique

solution to (Pµ).

Proof. For these ε, the set M+(ε) has measure zero. Therefore, it holds

pε(x) + ν(D∗Dvε)(x) − µ

vε(x) − yc(x)
= 0

almost everywhere on Ω, hence vε satisfies the first order necessary optimality con-

ditions for the optimization problem (Pµ). This is a problem with convex objective

functional; the necessary conditions are sufficient for optimality. Strong convexity

yields uniqueness (notice that ν > 0). Therefore, vε is the unique solution of (Pµ).

Corollary 3.6. There exists a constant cµ > 0 such that for µ ≤ 1 the unique

solution vµ of (3.6) satisfies vµ ≥ yc + cµµ a.e. on Ω.

4. Convergence of the central path. Having established the existence of the

central path µ 7→ vµ for all µ > 0, we can proceed with proving continuity of the path

and convergence towards a solution.

The unique minimizer of (3.6) can be characterized by (3.7) as

F (vµ; µ) = (D∗S∗SD + νD∗D)vµ − µ

vµ − yc
= 0 a.e.

Since vµ − yc ≥ cµµ holds for µ ≤ 1 by Corollary 3.6, F is directionally differentiable

in all directions v ∈ L∞. We denote the partial derivatives w.r.t. v and µ by ∂vF and

∂µF , respectively. The derivative ∂vF is

∂vF (v; µ) = (D∗S∗SD + νD∗D) +
µ

(v − yc)2
(4.1)

= (D∗S∗SD + νK) +

(

ν

λ2
+

µ

(v − yc)2

)

= K̄ +

(

ν

λ2
+

µ

(v − yc)2

)

, (4.2)

where

K̄ = D∗S∗SD + νK

is a bounded operator from L2 to L∞. Let γ = ‖K̄‖L2→L∞ . From (4.1) and (3.3) we

see immediately that, for all v ≥ yc + ε, ∂vF (v; µ) ∈ L(L2, L2) is a symmetric positive
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definite operator with

〈ξ, ∂vF (v; µ)ξ〉 ≥ ν〈Dξ, Dξ〉 ≥ ν‖S + λI‖−2‖ξ‖2.

The Lax-Milgram theorem guarantees the existence of a bounded inverse ∂vF (v; µ)−1 :

L2 → L2 with

‖∂vF (v; µ)−1‖ ≤ 1

ν
(‖S‖+ |λ|)2. (4.3)

In the next lemma we prove a further regularity property of ∂vF .

Lemma 4.1. The derivative ∂vF (v; µ) : L∞ → L∞ with v > yc is a bijective oper-

ator with bounded inverse ∂vF (v; µ)−1 : L∞ → L∞, where ‖∂vF (v; µ)−1‖L∞→L∞ ≤ ci

is bounded independently of µ.

Proof. Due to (4.3), for each z ∈ L∞ ⊂ L2 there is a solution ξ ∈ L2 to

∂vF (v; µ)ξ = z with

‖ξ‖ ≤ 1

ν
(‖S‖ + |λ|)2‖z‖ ≤

√

|Ω|
ν

(‖S‖+ |λ|)2‖z‖∞. (4.4)

Now we have by (4.2)

(

ν

λ2
+

µ

(v − yc)2

)

ξ = z − K̄ξ

and hence by (4.4)

‖ξ‖∞ ≤ λ2

ν

(

‖z‖∞ + ‖K̄‖L2→L∞‖ξ‖
)

≤ λ2

ν

(

1 + γ

√

|Ω|
ν

(‖S‖ + |λ|)2
)

‖z‖∞

=: ci‖z‖∞.

Thus, ξ ∈ L∞ holds, such that ∂vF (v; µ) : L∞ → L∞ is bijective and has a bounded

inverse ‖∂vF (v; µ)−1‖L∞→L∞ ≤ ci.

With the invertibility of ∂vF at hand we make use of the implicit function theorem

in order to justify the notion of a central path. We obtain the

Corollary 4.2. The mapping µ 7→ vµ is continuously differentiable from R+ to

L∞.

Now we turn to convergence of the central path towards a solution of (3.1).

Theorem 4.3. For µ → 0, the central path converges towards a KKT point v0

of (3.1). There exists a constant c0 < ∞ such that the following error estimate holds
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for all µ ≤ 1:

‖v0 − vµ‖L∞ ≤ c0
√

µ (4.5)

The proof is somewhat technical, for which we give a sketch of its main ideas

beforehand. For this purpose we assume for now that K̄ = 0, such that ∂vF (v; µ) =

ν/λ2 + µ/(v − yc)
2 is a Nemyckii operator. By the implicit function theorem, the

derivative v′
µ of the central path is given by

v′µ = −∂vF (vµ; µ)−1∂µF (vµ; µ) (4.6)

=

(

ν

λ2
+

µ

(vµ − yc)2

)−1
1

vµ − yc

=

(

ν(vµ − yc)

λ2
+

µ

vµ − yc

)−1

Using the fact that

ax +
b

x
≥ 2

√
ab (4.7)

holds for arbitrary a, b, x > 0, we see immediately that

v′µ ≤
(

2

√

νµ

λ2

)−1

≤ c√
µ

.

Integrating the slope of the central path from 0 to µ yields the length of the central

path and therefore an error bound of

‖vµ − v0‖∞ ≤ c
√

µ.

However, the operator K̄ is compact but nonzero, and introduces a nonlocal coupling

across the domain Ω. Bounding this coupling requires a more involved proof as given

below.

Proof. First we will establish an L2-bound on v′µ and infer an L∞-bound from

that. From this we will determine the existance of and distance to the limit point v0,

and finally check the first order necessary conditions for v0.

(i) L2-estimate. We set out to construct a splitting of the domain Ω into two different

regions, such that the nonlocal coupling introduced by K̄ is dominated by purely

local effects in each subdomain and is in a certain sense sufficiently small across the

subdomains. To this extend we define T = D∗S∗SD + νD∗D = K̄ + ν/λ2 and the
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characteristic functions of the almost active and almost inactive sets by

χA =







1, vµ − yc ≤ C

0, otherwise
and χI = 1 − χA, (4.8)

respectively, with

C =

√

µ

2‖T‖(1 + ‖T‖ ‖T−1‖) . (4.9)

Notice that multiplication by χA and χI acts as a projection onto two orthogonal

subspaces of L2 with disjoint support.

We may reformulate (4.6) as

∂vF (vµ; µ)v′µ =

(

T +
µ

(vµ − yc)2

)

v′µ =
χA + χI

vµ − yc
a.e., (4.10)

such that we can obtain individual bounds for each summand of the right hand side.

First we consider

∂vF (vµ; µ)vI =
χI

vµ − yc
.

By (4.3) we readily obtain some constant cI < ∞ such that

‖vI‖ =

∥

∥

∥

∥

∂vF (vµ; µ)−1 χI

vµ − yc

∥

∥

∥

∥

≤ 1

ν
(‖S‖+ |λ|)2 1

C
≤ cI√

µ
. (4.11)

Now we turn to the remaining part of (4.10) on the almost active set, which we write

as

(χA + χI)∂vF (vµ; µ)(χA + χI)vA =
χA

vµ − yc
.

Expanding the left hand side and separating the terms according to the subspaces

L2(supp χA) and L2(supp χI) generated by the projections χA and χI , respectively,

yields

χA∂vF (vµ; µ)χAvA + χA∂vF (vµ; µ)χIvA =
χA

vµ − yc

χI∂vF (vµ; µ)χAvA + χI∂vF (vµ; µ)χIvA = 0.

In the upper left block of the equation system, completely defined on the almost active

set, the interior point regularization dominates, such that we shift the remaining parts

to the right hand side. The antidiagonal blocks contain only the nonlocal coupling

introduced by K̄ and are moved to the right hand side in both equations. We end up

12



with

[

χA
µ

(vµ − yc)2
χA

]

χAvA =
χA

vµ − yc
− χATχAvA − χATχIvA (4.12)

[

χI

(

T +
µ

(vµ − yc)2

)

χI

]

χIvA = −χITχAvA. (4.13)

Notice that the restriction

χI

(

T +
µ

(vµ − yc)2

)

χI ∈ L(L2(supp χI), L
2(supp χI))

is a symmetric positive definite operator with bounded inverse

∥

∥

∥

∥

∥

(

χI

(

T +
µ

(vµ − yc)2

)

χI

)−1
∥

∥

∥

∥

∥

≤ ‖T−1‖.

Hence, (4.13) has a unique solution which is bounded in terms of the right hand side.

On the almost active set, (4.12) can be solved pointwise. Solving both equations

yields

‖χAvA‖ ≤
∥

∥

∥

∥

χA
vµ − yc

µ

∥

∥

∥

∥

+

∥

∥

∥

∥

χA
(vµ − yc)

2

µ

∥

∥

∥

∥

‖T‖‖χAvA‖

+

∥

∥

∥

∥

χA
(vµ − yc)

2

µ

∥

∥

∥

∥

‖T‖‖χIvA‖ (4.14)

and

‖χIvA‖ ≤
∥

∥

∥

∥

∥

(

χI

(

T +
µ

(vµ − yc)2

)

χI

)−1
∥

∥

∥

∥

∥

‖χITχAvA‖

≤ ‖T−1‖‖T‖‖χAvA‖. (4.15)

Inserting (4.15) into (4.14) and using (4.8) and (4.9) we obtain

‖χAvA‖ ≤ C
√

|Ω|
µ

+
C2

µ
‖T‖(1 + ‖T−1‖‖T‖)‖χAvA‖ =

C
√

|Ω|
µ

+
1

2
‖χAvA‖.

By (4.9) this verifies the existence of some constant c̄ < ∞ such that ‖χAvA‖ ≤ c̄√
µ .

Finally, ‖χIvA‖ ≤ ‖T−1‖‖T‖ c̄√
µ holds, such that by (4.11) there is a constant ĉ < ∞

with

‖v′µ‖ ≤ ‖χAvA‖+ ‖χIvA‖ + ‖vI‖ ≤ ĉ√
µ

. (4.16)
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(ii) L∞-estimates. Returning to (4.10) we obtain

‖v′µ‖L∞ ≤
∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1
1

vµ − yc

∥

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1

K̄v′µ

∥

∥

∥

∥

∥

L∞

≤
∥

∥

∥

∥

∥

(

ν(vµ − yc)

λ2
+

µ

vµ − yc

)−1
∥

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∥

(

ν

λ2
+

µ

(vµ − yc)2

)−1
∥

∥

∥

∥

∥

L∞

γ‖v′µ‖.

Using (4.7) we proceed with

‖v′µ‖L∞ ≤
∥

∥

∥

∥

∥

(

2

√

νµ

λ2

)−1
∥

∥

∥

∥

∥

L∞

+
λ2

ν
γ

ĉ√
µ
≤ c0√

µ

for some c0 < ∞.

(iii) Distance to the limit point. The distance between two points on the central path

is therefore bounded by

‖vµ1
− vµ2

‖L∞ ≤
∫ µ2

µ1

‖v′µ‖L∞ dµ ≤ c0

2
(
√

µ2 −
√

µ1). (4.17)

Since for any sequence µk → 0 the corresponding sequence vµk
of central path points

forms a Cauchy sequence, the path converges towards some limit point v0. Performing

the limit process µ1 → 0 verifies the error bound (4.5).

(iv)First order necessary conditions. Recalling the Lagrange multiplier approxima-

tions ηµ from (3.8) we write (3.7) as f ′(vµ) = ηµ. Due to the continuity of f ′ and

the convergence of vµ → v0 in L2, the multiplier approximations converge towards

η0 = f ′(v0) in L2. Since ηµ ≥ 0 and ηµ(vµ − yc) = µ for almost all x ∈ Ω and

therefore 〈ηµ, vµ − yc〉 = µ|Ω|, the same holds by continuity for η0, i.e. η0 ≥ 0 and

〈η0, v0 − yc〉 = 0. Since the first order necessary conditions are satisfied, v0 is a KKT

point for (3.4).

5. Convergence of a short step pathfollowing method. For the analysis

of interior point methods, local norms are an invaluable tool. Here we use the scaled

norm

‖v‖µ = ‖zµv‖L∞ ,

with the scaling

zµ =

√

ν

λ2
+

µ

(vµ − yc)2
,

which is closely connected to the energy norms used in the theory of self-concordant

barrier functionals [7, 8].
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We consider a short-step pathfollowing method with classical predictor. Since

we are interested in actually implementable algorithms, we have to use an inexact

Newton corrector, which replaces the infinite dimensional Newton equation

∂vF (vk ; µk+1)∆vk = −F (vk; µk+1)

for the exact correction ∆vk by a suitably discretized finite dimensional counterpart

∂vF (vk; µk+1)∆vk
h = −F (vk; µk+1) + rk.

for the inexact correction ∆vk
h, such that an inner residual rk remains. The iteration

index is denoted by a superscript. Another source of inexactness is e.g. the iterative

solution of the state equation. The algorithm reads as follows.

Algorithm 5.1.

Choose 0 < σ < 1, δ > 0, µ0 > 0, and v0 > yc

For k = 0, . . .

µk+1 = σµk

solve ∂vF (vk ; µk+1)∆vk
h = −F (vk; µk+1)

up to a relative accuracy of ‖∆vk
h − ∆vk‖µk+1 ≤ δ‖∆vk‖µk+1

vk+1 = vk + ∆vk
h

The remainder of the section is devoted to proving that for suitable choices of σ,

δ, µ0, and v0, all iterates of this algorithm are well defined and converge towards the

solution point v0. First we derive the analogue of Lemma 4.1 for the scaled norm.

Lemma 5.2. There is some constant cz < ∞ independent of µ, such that

‖zµ∂vF (v; µ)−1ζ‖L∞ ≤ cz(1 + ϑ)2‖z−1
µ ζ‖L∞

for all v ∈ Bµ(vµ; ϑ
√

µ) = {v ∈ L∞ : ‖v − vµ‖µ ≤ ϑ
√

µ} with ϑ < 1.

Proof. First we see that

∥

∥

∥

∥

v − vµ

vµ − yc

∥

∥

∥

∥

L∞

≤
∥

∥

∥

∥

zµ
v − vµ√

µ

∥

∥

∥

∥

L∞

≤ ‖v − vµ‖√
µ

≤ ϑ < 1

and therefore

v − yc ≥ (1 − ϑ)(vµ − yc) and v − yc ≤ (1 + ϑ)(vµ − yc), (5.1)

such that ∂vF (vµ; µ) is invertible. Define ξ = ∂vF (vµ; µ)−1ζ.

Analogously to Lemma 4.1 we distinguish two cases and first assume that

‖z−1
µ ‖L∞‖ξ‖L2 ≥ α‖zµξ‖L∞
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for some arbitrary α > 0. Then we obtain

‖z−1
µ ∂vF (v)ξ‖L∞ ≥ ‖z−1

µ ‖L∞‖∂vF (v)ξ‖L∞

≥ 1
√

|Ω|
‖z−1

µ ‖L∞‖∂vF (v)ξ‖L2

≥ 1
√

|Ω|
‖z−1

µ ‖L∞ν(‖S‖ + |λ|)−2‖ξ‖L2

≥ να
√

|Ω|
(‖S‖+ |λ|)−2‖zµξ‖L∞ . (5.2)

Otherwise we have by (5.1)

‖z−1
µ ∂vF (v)ξ‖L∞ =

∥

∥

∥

∥

z−1
µ K̄ξ + z−1

µ

(

ν

λ2
+

µ

(v − yc)2

)

ξ

∥

∥

∥

∥

L∞

≥ −‖z−1
µ ‖L∞‖K̄ξ‖L∞ +

∥

∥

∥

∥

z−1
µ

µ

(1 + ϑ)2(vµ − yc)2
ξ

∥

∥

∥

∥

L∞

≥ −‖z−1
µ ‖L∞γ‖ξ‖L2 + (1 + ϑ)−2‖zµξ‖L∞

≥ −γα‖zµξ‖L∞ + (1 + ϑ)−2‖zµξ‖L∞

= ((1 + ϑ)−2 − γα)‖zµξ‖L∞ . (5.3)

Choosing

ρ =

(

ν
√

|Ω|(‖S‖+ |λ|)2
+ γ

)−1

and α = ρ(1 + ϑ)−2,

the claim is verified for cz = (1 − γρ)−1 < ∞.

Next we prove a continuity result for the scaled norm.

Lemma 5.3. There is a constant cσ < ∞ independent of µ such that

‖v‖σµ ≤ (1 + cσ(1 − σ)‖v‖µ (5.4)

holds for all v ∈ L∞ and

cz

cz + 1/2
≤ σ ≤ 1.

Proof. We begin with estimating the derivative of the central path in the scaled

norm. Lemma 5.2 applied to (4.6) results in

‖v′µ‖µ ≤ cz‖z−1
µ ∂vF (vµ; µ)v′µ‖L∞ = cz‖z−1

µ (vµ − yc)
−1‖L∞ ≤ cz√

µ
. (5.5)

We proceed with introducing the monotonically decreasing majorant Θ(σ) for the
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expression

f(σ) =

∥

∥

∥

∥

vµ − yc

vσµ − yc

∥

∥

∥

∥

L∞

≤ Θ(σ)

by

Θ(σ) = f(1) +

∫ 1

σ

f ′(τ) dτ

≤ 1 +

∫ 1

σ

∥

∥

∥

∥

vµ − yc

(vτµ − yc)2
v′τµµ

∥

∥

∥

∥

L∞

dτ

≤ 1 +

∫ 1

σ

∥

∥

∥

∥

vµ − yc

vτµ − yc

∥

∥

∥

∥

L∞

∥

∥

∥

∥

√
τµ

vτµ − yc
v′τµ

∥

∥

∥

∥

L∞

µ√
τµ

dτ

≤ 1 +

∫ 1

σ

Θ(τ)‖v′
τµ‖τµ

µ√
τµ

dτ

≤ 1 +

∫ 1

σ

Θ(σ)
cz√
τµ

µ√
τµ

dτ

≤ 1 + Θ(σ)
cz

σ
(1 − σ).

Solving for Θ yields

∥

∥

∥

∥

vµ − yc

vσµ − yc

∥

∥

∥

∥

L∞

≤
(

1 − cz

σ
(1 − σ)

)−1

.

Now from

‖v‖σµ =

∥

∥

∥

∥

zµ
zσµ

zµ
v

∥

∥

∥

∥

L∞

≤ ‖v‖µ

√
σ

∥

∥

∥

∥

vµ − yc

vσµ − yc

∥

∥

∥

∥

L∞

≤
√

σ
(

1 − cz

σ
(1 − σ)

)−1

‖v‖µ

the constant cσ is easily established.

Lemma 5.4. There exists some constant ω < ∞ such that the Lipschitz condition

∥

∥∂vF (v; µ)−1(∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)
∥

∥

µ
≤ ω√

µ
‖v − v̂‖2

µ (5.6)

holds for all v, v̂ ∈ Bµ(vµ, ϑ
√

µ) with ϑ < 1.
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Proof. Using Lemma 5.2 we have

∥

∥∂vF (v; µ)−1(∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)
∥

∥

µ

≤ cz(1 + ϑ)2
∥

∥z−1
µ (∂vF (v; µ) − ∂vF (v̂; µ))(v − v̂)

∥

∥

L∞

= cz(1 + ϑ)2
∥

∥

∥

∥

z−1
µ

(

µ

(v − yc)2
− µ

(v̂ − yc)2

)

(v − v̂)

∥

∥

∥

∥

L∞

≤ cz(1 + ϑ)2
∥

∥

∥

∥

z−1
µ µ

v − v̂

((1 − ϑ)(vµ − yc))3
(v − v̂)

∥

∥

∥

∥

L∞

= cz
(1 + ϑ)2

(1 − ϑ)3

∥

∥

∥

∥

µ

z3
µ(vµ − yc)3

z2
µ(v − v̂)2

∥

∥

∥

∥

L∞

≤ cz
(1 + ϑ)2

(1 − ϑ)3

∥

∥

∥

∥

µ

z3
µ(vµ − yc)3

∥

∥

∥

∥

L∞

‖v − v̂‖2
µ

≤ cz(1 + ϑ)2√
µ(1 − ϑ)3

‖v − v̂‖2
µ,

which proves the claim for ω = cz
(1+ϑ)2

(1−ϑ)3 .

We can now prove the convergence of the pathfollowing method.

Theorem 5.5. Assume that

δ ≤ ρ
1 − ρ

1 + ρ
, σ ≥ 1 −

(

1 − ρϑ + 3cσ + cz

ϑ + 3cσ + cz

)

√

ρ − δ(1 + ρ) − ρ

1 − ρ
, (5.7)

and ‖v0 − vµ0‖µ0 ≤ ρϑ
√

µ0 for ϑ ≤ (cz + 2)−1 and some ρ < 1. Then the iterates vk

defined by Algorithm 5.1 are all well defined and converge linearly towards the limit

point v0. More precisely,

∥

∥vk − vµk

∥

∥

µk ≤ ρϑ
√

µk. (5.8)

Proof. By induction, we assume that (5.8) holds for the current iterate vk. For
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σ > cz/(cz + 2), Lemma 5.3 and (5.5) yield

‖vk − vµk+1‖µk+1 ≤ ‖vk − vµk‖µk+1 + ‖vµk − vµk+1‖µk+1

≤ (1 + cσ(1 − σ))‖vk − vµk‖µk +

∫ µk

µk+1

‖v′τ‖µk+1 dτ

≤ (1 + cσ(1 − σ))ρϑ
√

µk +

∫ µk

µk+1

(1 + cσ(1 − σ))‖v′
τ‖τ dτ

≤ (1 + cσ(1 − σ))

(

ρϑ
√

µk +

∫ µk

µk+1

cz√
τ

dτ

)

≤ (1 + cσ(1 − σ))

(

ρϑ
√

µk +
czµ

k(1 − σ)
√

µk+1

)

≤ (1 + cσ(1 − σ))

(

ρϑ√
σ

+
cz(1 − σ)

σ

)

√

µk+1.

Notice that

σ ≥ σmin =
ρϑ + 3cσ + cz

ϑ + 3cσ + cz
>

cz

cz + 2

implies

‖vk − vµk+1‖µk+1 ≤ 1

σ
(1 + cσ(1 − σ))(ρϑ + cz(1 − σ))

√

µk+1

=
1

σ
(ρϑ + (cσρϑ + cz)(1 − σ) + cσcz(1 − σ)2)

√

µk+1

<
1

σ
(ρϑ + (cσρϑ + cz + 2cσ)(1 − σ))

√

µk+1 (5.9)

≤ ϑ
√

µk+1.

Since the estimate (5.9) is convex, we end up with the error bound

‖vk − vµk+1‖µk+1 <

(

ρϑ +
1 − σ

1 − σmin
(1 − ρ)ϑ

)

√

µk+1.

Dropping the fixed argument µk+1 from F we obtain the error of the exact Newton

corrector result as

vµk+1 − vk − ∆vk = vµk+1 − vk + ∂vF (vk)−1F (vk)

= ∂vF (vk)−1
(

F (vk) + ∂vF (vk)(vµk+1 − vk)
)

= −
∫ 1

0

∂vF (vk)−1
(

∂vF (vk + s(vµk+1 − vk)) − ∂vF (vk)
)

(vµk+1 − vk) ds
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and by Lemma 5.4

‖vµk+1 − vk − ∆vk‖µk+1 ≤
∫ 1

0

ω
√

µk+1
s‖vµk+1 − vk‖2

µk+1 ds

<
ω

2
√

µk+1

(

ρϑ +
1 − σ

1 − σmin
(1 − ρ)ϑ

)2

µk+1.

Since by Lemma 5.4 and the assumption on ϑ

ω

2
ϑ =

cz(1 + ϑ)2

2(1 − ϑ)3
ϑ ≤ czϑ

1 − 2ϑ
≤

cz
1

cz+2

1 − 2
cz+2

= 1

holds, we can further estimate

‖vµk+1 − vk − ∆vk‖µk+1 <

(

ρ +
1 − σ

1 − σmin
(1 − ρ)

)2

ϑ
√

µk+1.

Here it is apparent that choosing σ = σmin is just sufficient for an exact Newton

corrector iteration to converge. However, we aim at restoring the tolerance ρθ
√

µk+1

in a single Newton step. With the additional stepsize restriction

σ ≥ 1 − (1 − σmin)

√
ρ − ρ

1 − ρ

we obtain

ρ +
1 − σ

1 − σmin
(1 − ρ) ≤ √

ρ

and thus

‖vµk+1 − vk − ∆vk‖µk+1 < ρϑ
√

µk+1.

Up to now, we have considered the exact Newton correction with a length of

‖∆vk‖µk+1 ≤ ‖vµk+1 − vk − ∆vk‖µk+1 + ‖vµk+1 − vk‖µk+1

≤ ρϑ
√

µk+1 + ϑ
√

µk+1

= (1 + ρ)ϑ
√

µk+1.

The next iterate vk+1 given by the inexact Newton step has therefore an error bound

20



of

‖vµk+1 − vk+1‖µk+1 ≤ ‖vµk+1 − vk − ∆vk‖µk+1 + δ‖∆vk‖µk+1

≤
[

(

ρ +
1 − σ

1 − σmin
(1 − ρ)

)2

+ δ(1 + ρ)

]

ϑ
√

µk+1.

With the accuracy requirement and the final stepsize restriction given by (5.7), we

obtain

‖vµk+1 − vk+1‖µk+1 ≤ ρϑ
√

µk+1,

which completes the induction.

Moreover, together with Theorem 4.3, we obtain

‖v0 − vk‖L∞ ≤ ‖v0 − vµk‖L∞ +
λ√
ν
‖vµk − vk‖µk+1

≤ c0

√

µk + ρϑ
√

µk ≤ (c0 + ρϑ)σk/2
√

µ0,

which proves r-linear convergence of vk to the KKT point v0.

6. Numerical tests. We have tested our method by the following example

min J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u− ud‖2

L2(Ω) (PT)

subject to

−∆y + y = u in Ω (6.1)

∂ny = 0 on Γ (6.2)

and to the pointwise mixed control-state constraints

y + λu ≥ yc a.e. in Ω. (6.3)

with Ω = (0, 1) × (0, 1).

The function ud is introduced for technical reasons.This does not change the validity

of our theorems.

It is easy to verify, that (PT) fits into the setting of (P). For all λ > 0 the Lagrange

multiplier η belongs to L2(Ω). We consider three different examples. In example

1 and 2 the Lagrange multiplier is in L2(Ω) also for λ = 0. In the third example

η ∈ B(Ω) for λ = 0.

We solved the regularized problems numerically by a short-step pathfollowing

method, using a conform finite element method to solve the state and adjoint equation,
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where all variables were discretised by linear finite elements. Note that due to the

linearity of the state equation, the computational all-at-once approach used here is

indeed an implementation of the inexact Newton method described in §5. Using a

primal algorithm, we have calculated the Lagrange multiplier η by the relation

η =
µ

y − yc + εu
.

We implemented our method using Matlab and the PDE-toolbox for mesh gener-

ation, matrix-assembling etc. The stopping parameter for the outer iteration was

µ ≤ ε = 10−6, except for the calculation of figures 6.27–6.30. For our computations

we used a Friedrichs-Keller triangulation with fixed mesh size h = 0.015625. In the

following, the numerical solutions are denoted by (·)h, the exact optimal control, op-

timal state resp. the optimal adjoint state are denoted by ū, ȳ and p̄, resp. In some

figures these functions are labeled as uopt etc. Notice, that for fixed mesh size the

numerical solutions tend to the projection of the exact solution onto the finite element

space. All computations were performed on a dual Pentium IV/2.8GHz machine with

1GB RAM running under Linux.

6.1. Example 1. This example is taken from [6]. We choose ū = 2, p̄ = −2 and

ȳ = 2. The desired state is given by

yd(x1, x2) = 4 − max
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 1, 0
}

,

yc is given by

yc(x1, x2) = min
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 3, 2
}

and the Lagrange multiplier is

η(x1, x2) = max
{

−20
(

(x1 − 0.5)2 − (x2 − 0.5)2
)

+ 1, 0
}

.

Moreover, we have chosen ud = 0. In (PT) we choose ν = 1 and λ = 10−16.

The following figures show the exact functions yd, yc and the Lagrange multiplier η.
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Fig. 6.1. Desired state yd

0

0.5

1

0

0.5

1
−10

−5

0

x
1x

2

y c

Fig. 6.2. State contraint yc
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Fig. 6.3. Multiplier η

The next set of figures show the numerical solutions yh, uh, ph, and ηh of the

problem regularized with λ = 10−16.
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Fig. 6.4. Control uh
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Fig. 6.5. State yh
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Fig. 6.6. Adjoint state ph
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Fig. 6.7. Lagrange multiplier ηh

For a comparsion with results computed by a primal-dual active set strategy we

refer to [6]. Note that the scale for y, u and p is in the span of [1.999999, 2.000001],

[1.9995, 2.0005] respectively [−2.0005,−1.9995]. In contrast to the primal-dual active

set strategy in [6], small values of λ do not influence the convergence rate.

The following figures 6.8–6.11 show the differences between the numerical solu-

tions uh,yh ph and ηh and the exact solutions u, y, p and η, masured in the L2-norm

for regularization parameter λ = 10−16. Both axes are scaled logarithmically. With

this choice of the regularisation parameter, the convergence of the path is visible.The

behavior of the Lagrange multiplier for µ → 0 is remarkable, see also figures 6.12–6.15.
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Fig. 6.11. Error ‖η − ηopt‖

The next figures show the evolution of the Lagrange-multiplier ηh along the central

path.
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Fig. 6.12. Multiplier ηh at µ = 0.01
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Fig. 6.13. Multiplier ηh at µ = 10−4
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Fig. 6.14. Multiplier ηh at µ = 10−6
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Fig. 6.15. Multiplier ηh at µ = 10−8

6.2. Example 2. This example is constructed such that ȳ, ū and p̄ are trigono-

metric functions of the form c cos (πx1) cos (2πx2). We choose c = 1 for ȳ and

c = (−5νπ2) for p̄ . From the state equation and the optimality condition we get

ū = −∆ȳ + ȳ =
(

5π2 + 1
)

ȳ, and ud = ū + 1
ν p̄ = ȳ, respectively.

Choosing ŷ = 2 sin (2πx1)− 1.5, η̄ = max {ŷ − ȳ, 0}, and yc = min {ŷ, ȳ}, the comple-

mentary slackness condition is fullfilled. All these functions are continuous. Therefore

the adjoint equation can be treated in a classical way. From the adjoint equation we

get yd = ∆p̄ − p̄ + ȳ − η̄ =
((

5νπ2
) (

5π2 + 1
)

+ 1
)

ȳ − η̄. Figures 6.16–6.18 show the

functions yd yc and η.
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Fig. 6.17. State constraints yc
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The following figures show the numerical solutions for ν = 10−6 and λ = 10−6.
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Fig. 6.20. State yh
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Fig. 6.22. Multiplier ηh

Figures 6.23–6.26 show the differences (·)h − (·)opt between the numerical solutions

and the optimal solutions at ν = 10−6 and λ = 10−6.
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Fig. 6.26. Error ‖η − ηopt‖

The following set of figueres shows the evolution of the control uh along the central

path.
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Fig. 6.28. Control uh at µ = 0.001
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Fig. 6.29. Control uh at µ = 10−4
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Fig. 6.30. Control uh at µ = 10−5

6.3. Example 3. In this example we consider the problem (PT) in the following

setting:

yd = cos(πx1) cos (2πx2) (6.4)

yc = min {6 sin (πx1) sin (πx2) − 4, 1} (6.5)

and ud = 0. Here, the optimal control ū is unknown, just as the functions ȳ, p̄ and

the Lagrange-multiplier η. In figures 6.31 and 6.32 we show the functions yd and yc.
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Fig. 6.31. Desired state yd
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Fig. 6.32. State contraints yc

For our computations we choose ν = 10−6 and λ = 10−16. The following set of figures

shows the numerical solutions uh, yh, ph and ηh.
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Fig. 6.33. Control uh
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Fig. 6.34. State yh
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Fig. 6.35. Adjoint state ph
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Fig. 6.36. Lagrange multiplier ηh at

ν = 10−6 and λ = 10−16

Obviously the Lagrange-multiplier ηh shown in figure 6.36 tends to a measure with

singular parts located on two circles in Ω, the points of nondifferentiability of ȳ.
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